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ABSTRACT

Having shown early promise, free-space optical (FSO) communications face formidable challenges in the age of information explosion. The
ever-growing demand for greater channel communication capacity is one of the challenges. The inter-channel crosstalk, which severely
degrades the quality of transmitted information, creates another roadblock in the way of efficient implementation of FSO communication sys-
tems. Here, we advance theoretically and realize experimentally a potentially high-capacity FSO protocol that enables high-fidelity transfer of
an image or set of images through a complex environment. In our protocol, we complement random light structuring at the transmitter with
a deep learning image classification platform at the receiver. Multiplexing unique, independent, mutually orthogonal degrees of freedom
available to structured random light can potentially significantly boost the channel communication capacity of our protocol without introduc-
ing any deleterious crosstalk. Specifically, we show how one can multiplex the degrees of freedom associated with the source coherence radius
and a spatial position of a beamlet within an array of structured random beams to greatly enhance the capacity of our communication link.
The superb resilience of structured random light to environmental noise, as well as extreme efficiency of deep learning networks at classifying
images, guarantees high-fidelity image transfer within the framework of our protocol.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0203326

In the age of information explosion, there has been growing
demand for high-capacity communication systems due to relentless
growth of traffic through any available communication channel.1 To
achieve high-capacity communications within the framework of free-
space optics, it is essential that all available degrees of freedom of a
light field be explored and engaged. To date, a number of approaches
to boost the transmission capacity of free-space optical communica-
tions have been proposed,2–4 including a quadrature phase shift key-
ing,5 wavelength division multiplexing,6 space division multiplexing,7

and polarization division multiplexing.8 To further increase the chan-
nel capacity to overcome the existing bottlenecks, orbital angular
momentum division multiplexing has recently been proposed.9–11

Apart from capacity limitations, though, free-space optical communi-
cations are hampered by transmission quality degradation owing to
data crosstalk.12 The latter is chiefly due to the challenge posed by a
realistic transmission medium involving atmospheric turbulence and/

or solid particles, such as aerosols, in the light path from a source
(transmitter) to a receiver.10 Indeed, the refractive index of the atmo-
sphere fluctuates due to the temperature and humidity variations, giv-
ing rise to turbulent effects. The atmospheric fluctuations distort the
phase of a transmitted light beam, causing deleterious crosstalk among
multiple independent degrees of freedom (DoFs) of a free-space com-
munication link.12 As atmospheric turbulence seriously hinders further
progress toward high-quality, high-capacity optical communications
through a realistic complex environment, numerous strategies have
been proposed to remedy the channel crosstalk.13–16 In addition to
multiple adaptive optics techniques, which can be subdivided into two
main groups, pre-compensation and post-compensation,10 there is a
spatial polarization differential phase shift keying technology for vector
light beams17 and scattering-matrix-assisted retrieval protocol.18

Unfortunately, virtually all these strategies require complicated, and
often time-consuming, data processing and they invariably fail to lower
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crosstalk to an acceptable level. Furthermore, to compensate for light
scattering obstacles in the transmission path, self-healing coherent
light sources, such as the ones generating Bessel beams, have been
employed to help self-reconstruct transmitted image structure past
opaque obstructions.19,20

At the same time, recent work has established extraordinary resis-
tance of structured random beams to atmospheric turbulence and their
outstanding self-healing ability upon encountering obstacles.21–24 In
particular, the authors of Ref. 24 have demonstrated that there exist
structured random beams maintaining their intensity profile structure
in the turbulent atmosphere over a distance determined by the turbu-
lence strength. In contrast to fully spatially coherent fields,25 structured
random fields possess a new degree of freedom, the normalized auto-
correlation function of the fields at a pair of points across the source,
known as the degree of coherence of a source.26,27 This DoF has been
explored to realize high-security optical data storage and retrieval.28

Moreover, various aspects of optical field correlations at the source, for
example, their spatial structure, transverse coherence radius, or classi-
cal entanglement,29 provide access to numerous, untapped, mutually
orthogonal DoFs that can be employed for high-capacity, high-fidelity
optical communications through complex environments.

In this Letter, we combine structured random light engineering at
the source to encode an image into the unique DoFs of such light and
deep learning framework at the receiver to propose theoretically and
realize experimentally high-fidelity image transmission through a com-
plex environment. In particular, we employ statistically homogeneous,
Laguerre–Gaussian correlated sources that produce optical fields with
ring correlation structure at the source and ring-like far-field intensity
profiles. We demonstrate that such ring-like patterns can be utilized to
encode image information. We also show how the source coherence
radius can be used as another independent DoF for information
encoding. Furthermore, we demonstrate experimentally that supreme
resilience of structured random light to atmospheric fluctuations and
their excellent ability to self-heal upon encountering obstacles augurs
well for the fidelity of image transfer, at least, over short free-space
communication links. We reveal the multiplexing capabilities of
unique DoFs of random light. For instance, we show how the source
coherence radius can be multiplexed with the space position of any
beamlet within an array of partially coherent beams carrying image
information to the receiver. These multiplexing capabilities demon-
strate the potential for significant enhancement of information capac-
ity within our protocol.

Yet another innovation of our protocol is the use of deep learning
network capabilities for pattern classification at the decoding stage. In
recent years, deep learning has enjoyed immense success in computer
science, making it possible to advance data-driven artificial intelligence
technologies, such as computer vision,30 speech recognition,31 and
decision making.32 Recent applications of deep learning in photonics
range from accurate prediction of resonance spectra33 and inverse
design of photonic devices34 to high-resolution retrieval of orbital
angular momentum states35 and accurate phase prediction for aniso-
tropic digital coding metasurfaces.36 Although a deep convolutional
neural network (CNN), which can be applied to classification tasks,37

is the most popular, recently proposed residual networks (ResNets),
which can scale up to thousands of layers, have demonstrated excellent
promise for classification tasks with low training errors.38 For these
reasons, we employ ResNet 34 for image decoding at the receiver end.

The fusion of random light structuring at the transmitter and deep
learning image classification at the receiver renders our protocol a
promising candidate to realize high-fidelity optical image transmission
through a noisy link with a potential to attain high communication
channel capacity via tapping into unique crosstalk-free DoFs available
to random light sources. As an added bonus, our work will undoubt-
edly inform further research in the topical field of deep learning net-
work applications to photonics.

Consider a structured random light field propagating along the z
axis. In the space-frequency representation, we can describe the
second-order correlations of the fields at a pair of points r1 and r2 in
the transverse plane of the source in terms of a cross-spectral density
of the source. We can express the cross-spectral density of any physi-
cally realizable statistical source as39

W0ðr1; r2Þ ¼
ð
dk pðkÞH�ðr1; kÞHðr2; kÞ: (1)

Here, Hðr; kÞ is an arbitrary kernel at a temporal frequency x and
pðkÞ is a non-negative spectral distribution function in the reciprocal
k-space; we will drop any explicit dependence on x hereafter.

Let us now focus on statistically homogeneous light sources for
which Hðr; kÞ ¼ ffiffiffiffiffiffiffiffi

IðrÞp
eik�r, where IðrÞ is a source intensity profile.39

It then follows at once from Eq. (1) that the degree of coherence
l0ðr1 � r2Þ of such a source, defined as a normalized second-order
correlation function l0ðr1; r2Þ ¼ W0ðr1; r2Þ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Iðr1ÞIðr2Þ

p
,25,26 is sim-

ply a Fourier transform of pðkÞ. Furthermore, the far-field intensity
profile of a low-coherence source has the same functional form as
pðkÞ.26 Therefore, the spatial structure of source correlations, or equiv-
alently, its spectral density distribution pðkÞ can serve as an indepen-
dent DoF for information encoding. We choose a Laguerre–Gaussian
(LG) correlated Schell-model source as a representative example.40

The spectral density of such a source reads

pðkÞ / ðk2r2c=2Þjlj Ljljp ðk2r2c=2Þ
h i2

e�k2r2c =2: (2)

Here, rc is a coherence radius of the source and Ljljp stands for an asso-
ciated Laguerre polynomial of azimuthal l and radial p indices, respec-
tively. We can then generate a multitude of LG-correlated sources by
varying p and l. Furthermore, one can easily verify that a Fourier trans-
form of the spectral density of the LG-correlated source yields yet
another LG-like spatial pattern.

We are now in a position to describe our strategy to encode a
desired image into an ensemble of light beams generated by an LG-
correlated source. We sketch the schematics of our protocol in Fig. 1.
We exhibit 4 LG profile patterns, which we refer to as states hereafter,
as an illustrative example of image encoding into LG spatial correla-
tions of a source. The source produces an ensemble of LG-correlated
beams of spot size w¼ 0.68mm and coherence radius rc ¼ 0:1mm,
propagating from the source (transmitter) to a receiver. The ensemble
contains LG states corresponding to four index parameters: LG10,
LG20, LG12, and LG22. The transmitted information in our protocol is
a 16-gray-level (8, 24, 40, 56, 72, 88, 104, 120, 136, 152, 168, 184, 200,
216, 232, and 248) image of Lena, which has 100� 100 pixel resolu-
tion. The gray level of the image is quantified by 2-digit quaternary
numbers (00, 01, 02, 03… 32, 33). Here, every quaternary number cor-
responds to an LG-correlated beam structure (0 is LG10, 1 is LG20, 2 is
LG12, and 3 is LG22). Therefore, we can encode the gray level of each
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pixel at the transmitter and store it in 2 LG-correlated beam structures.
Next, we transmit the encoded information from the source to the
receiver in free space, or realistically through a random medium, with
the aid of an ensemble of LG-correlated beams. In the case of free-
space propagation, the intensity patterns at the receiver, situated in the
far-zone of the source, are proportional to pðkÞ, which is evaluated at
r. Furthermore, we record the intensity patterns of the received beam
ensemble with a CCD camera and decode them into a set of quater-
nary numbers following the encoding rules. Finally, we collect a set of
pixels of variable gray level encapsulating the transmitted image.

We employ a deep residual learning ResNet architecture with 34
layers, known as ResNet 34 network. The network is only interested in
the image of intensity patterns and these patterns are directly accessible
to the computers. First, we order sequentially all members of an LG-
correlated beam ensemble recorded by the camera. In the following
step, we have the network classify the received images and map them
into quaternary numbers for subsequent decoding. Thus, each inten-
sity pattern can be converted into a set of digital numbers by the classi-
fier network as shown in Fig. 2. We display the basic framework of
ResNet 34 classifier in the dashed square of Fig. 2 and we discuss the
details of the overall structure of the network in Sec. I of the supple-
mentary material, see especially Table S1 and Fig. S1. We now outline
how ResNet 34 works in a classifier mode. Inspired by the concept of
transfer learning, we use the pre-trained parameters, which have been
previously trained and tested on the ImageNet dataset,41 for initializa-
tion. We then fine-tune ResNet 34 with our images to suit a particular
classification task. At the outset, we prepare 200 experimental images
with labels for each category and combine them into a training dataset.
Next, we resize all the training images to 224� 224 to be served as
input to the network. To obtain a robust classifier model, we divide the
whole training dataset randomly into three non-overlapping subsets in

proportion 70%, 20%, and 10%, corresponding to the training, valida-
tion, and test sets, respectively. Specifically, to avoid any bias caused by
class imbalance, we make sure that the number of different class sam-
ples is the same in each subset. We utilize the training set to learn the
characteristics of the data and develop a model. The validation set is
used to adjust the parameters and hyper-parameters of the model dur-
ing the training process to improve the model performance. The test
set should not be used in the training phase and is used to evaluate the
performance and robustness of the model on unseen data.42 Having
taken these steps, we have established a robust ResNet 34 network
ready to classify images. We then resize the images to be tested and
feed them into the established classification network, which realizes
decoding in our protocol. Each tested image corresponds to the net-
work output category, with the corresponding quaternary number
specifying its gray level. Once the decimal gray value of each pixel is
obtained, we can identify the whole image.

We verify our protocol by carrying out proof-of-principle
image transmission with an experimental setup sketched in
Fig. 3(a). First, we produce a fully coherent Gaussian beam with
the help of a continuous-wave-diode-pumped laser with the carrier
wavelength k0 ¼ 532 nm and transmit the beam through a neutral
density filter (NDF). After having been expanded and collimated
by a beam expander (BE) comprised of two lenses of different focal
length, L1 and L2, the beam is reflected by a spatial light modulator
(SLM), which displays a hologram dataset of LG patterns encapsu-
lating the encoded information. Thereby, the generated LG beams
are focused by a lens L3 (f¼ 250mm) and projected onto a rotating
ground glass disk (RGGD), which we place in the front focal plane
of a collimating lens L4. Next, an LG-correlated beam emerges past
L4 (f¼ 150mm) and a Gaussian amplitude Filter (GAF) and we
encode the transmitted information into its spatial correlation

FIG. 1. Schematics of our encoding/decoding protocol with LG-correlated beams.
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structure. Having propagated a 1.92m stretch of free space, the
beam is focused onto a charge coupled device (CCD) camera by a
lens L5 (f¼ 150mm). The camera serves as a receiver recording the
intensity patterns of an LG-correlated beam ensemble.

We contrast the transmitted and received images of Lena in
Fig. 3(b). We can readily infer from the figure that there is excellent
qualitative resemblance between the transmitted and received images
attesting to the viability of our protocol. We then quantify the fidelity

of each state in terms of a conditional probability Psr jst of finding a
transmitted state st in state sr, and the total signal error rate can also be
evaluated as

P
sr 6¼st

Pðsr jstÞPðstÞ.17 We summarize the results in
Fig. 3(c). The multitude of 100� 100� 2 ¼ 20 000 received states are
recognized by the ResNet 34 network, and the attained fidelity of the
image transfer, evaluated as a fraction of correctly received states vs the
total number of transmitted states, exceeds 99.99%. In other words, the
total average signal error rate is less than 10�4.

FIG. 2. Decoding process and the archi-
tecture of ResNet 34 classifier.

FIG. 3. Experimental verification of our
protocol. (a) Experimental setup. NDF:
neutral density filter; L: thin lens; RGGD:
rotating ground glass disk; GAF: Gaussian
amplitude filter; SLM: spatial light modula-
tor; RM: reflected mirror; and CCD: charge
coupled device. (b) Qualitative juxtaposi-
tion of transmitted and received images.
(c) Quantitative measure of the state detec-
tion fidelity as a conditional probability
Psr jst of finding a transmitted state st in
state sr, where sr ðstÞ is represented in the
quaternary basis (0, 1, 2, 3).
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We now elucidate the role of noise due to either atmospheric tur-
bulence or opaque obstacle scattering on image transmission quality
within the framework of our protocol. There has been a growing body
of evidence, see, for instance, Ref. 21 for a review that decreasing spa-
tial coherence of a light source enhances the resilience of the beams
generated by such a partially coherent source to random perturbations
in a complex environment. To verify this conjecture, we record the
intensity patterns of LG-correlated beams propagating through a ran-
dom medium mimicking atmospheric turbulence and compare them
with those of fully coherent LG beams propagating through the same
medium. We use optical diffusers (ODs) to simulate turbulence, see
the supplementary material for further information. We can infer
from Fig. 4 that fully coherent LG beams are more distorted than their
partially coherent cousins. This observation implies that image trans-
mission through random medium and recovery of fully coherent LG
beams is much more complicated and time-consuming as well as far
less accurate than that with LG-correlated beams. Moreover, the situa-
tion exacerbates as the turbulence strength increases. We can model
stronger turbulence with two ODs as opposed to weaker turbulence,
which can be modeled with just a single diffuser. By comparing the
corresponding panels of Fig. 4, we observe that the advantage of reduc-
ing source coherence of the beam augments for stronger turbulence:
We clearly distinguish a ring structure of the LG-correlated beam in
stronger turbulence, while the intensity profile of a fully coherent LG
beam swiftly turns into essentially a random speckle pattern.

To test our protocol in the more adverse situation, we repeat all
protocol steps, except we include two ODs to model stronger turbu-
lence as a propagation milieu. We transmit a 16-gray-level Lena image
of 80� 80 pixel resolution. We present a schematic of the experimen-
tal setup in Fig. S2 of the supplementary material. The received inten-
sity patterns remain distinguishable and can be decoded directly by
ResNet 34, thereby avoiding redundant processing and helping save

time. Our results show good tolerance of the protocol to medium tur-
bulence and yield the fidelity of image retrieval of over 99.99%, corre-
sponding to a total signal error rate lower than 10�4, see Fig. S7(a).

By the same token, random beams of sufficiently low coherence
are known to self-heal upon encountering discrete obstacles such as
suspended particles in free space.22 In Fig. S3 of the supplementary
material, we provide experimental evidence of LG-correlated beam
self-healing capabilities and then repeat the protocol for image trans-
mission and realize a fidelity of over 99.99%, see also Fig. S7(b). We
remark that the extremely high fidelity of image transmission in free-
space and turbulent or colloidal particle medium is achieved thanks to
the superb job that a deep learning network, such as ResNet 34, does
to faithfully decode images.

An alternative strategy involves information encoding into trans-
verse coherence radius of the light source, which can be viewed as
another independent degree of freedom for free-space optical commu-
nications. The details of this protocol, which are quite similar to those
of the previously described one, can be found in Sec. IV of the supple-
mentary material. As is evidenced by Fig. S7(c), the received image
bears excellent resemblance to the transmitted one, attesting to the via-
bility of our protocol.

The two protocols that we have described thus far involve two
independent DoFs for free-space optical communications: the spatial
structure of the source degree of coherence and the coherence radius
of the source. Each of these DoFs can be multiplexed with other optical
field characteristics, such as spatial, polarization, and spectral (wave-
length) DoFs, to boost the communication capacity of the protocol.

In the supplementary material, we illustrate multiplexing the
coherence radius and spatial location of a beamlet within a source
array to demonstrate but one among multiple perspectives. The opera-
tion is introduced in Sec. V of the supplementary material. The results
shown in Fig. S8 imply a transmission fidelity of 99.99% and total sig-
nal error rate of 10�4.

We have theoretically proposed and experimentally implemented
a free-space optical communication protocol enabling high-fidelity
transfer of a desired information through, in general, a noisy commu-
nication channel. The key innovation of the proposed protocol is the
fusion of random source structuring at the transmitter end and the
employment of a deep learning network at the receiver end. The struc-
turing of random source makes it possible to tap into multiple hitherto
unexplored DoFs for image encoding, including the two that have
been explicitly demonstrated to yield high-fidelity information trans-
fer: the coherence structure of the source and the source coherence
radius. Furthermore, we also demonstrated the capability of our proto-
col for multiple DoF multiplexing to greatly enhance its communica-
tion capacity. In addition, using structured random light ensures
resilience of the transmitted image to channel noise such as medium
turbulence or the presence of solid obstacles in the light propagation
path. The high-fidelity of our protocol is achieved due to two factors.
First, the structured random light is robust against random perturba-
tions in the medium. Second and most important, the deep learning
network, which we employ for information decoding, enables
extremely accurate image recognition in a time efficient manner, com-
pared to other proposed imaging protocols.28

See the supplementary material for the details on experimental
verification of our protocol in complex environment, image

FIG. 4. Recorded intensity profiles of LG-correlated vs fully coherent LG beams
transmitted through either a single or two optical diffusers.
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transmission utilizing source coherence radius, multiplexing the coher-
ence radius and spatial location, comparison between transmitted and
received images, and fidelity evaluation.
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